

University of Stuttgart

rele Universität Bezon unibz Libers Universita di Bolgano Università Liepia de Bulsan

The Eighth International Workshop on Load Testing and Benchmarking of Software Systems (LTB 2020)

Avritzer et al.: Automated Scalability Assessment in DevOps

About Alberto Avritzer eSulabSolutions

- Senior Researcher at Siemens and AT&T Bell Labs for about 24 years
- Published over 70 papers in journals, refereed conference proceedings, and book chapters in those areas: (<u>http://dblp.uni-trier.de/pers/hd/a/Avritzer:Alberto</u>)
 - Resilience Assessment and Evaluation of Computing Systems. Springer 2012
 - Handbook of Software Aging and Rejuvenation, World Scientific, May 2020, World Scientific (<u>https://worldscientific.com/worldscibooks/10.1142/11673</u>)
- Siemens/MTA: The NY Subway PA/CIS Scalability Assessment
- Load Testing and Performance Analysis of AT&T Operations support systems:
 - Monitoring for Software aging and Rejuvenation (1993)
 - Performance testing using Markov chain (1995)
- Founder of eSulabSolutions (<u>https://esulabsolutions.godaddysites.com/</u>):
 - Automated scalability assessment in DevOps and micro service architecture

Motivation: Recent Scalability Related Disasters

Americans crash the Canadian immigration

NYS Labor website crashes

his site can'

Motivation: Influence of Poor Performance on the Success of Businesses

Avritzer et al.: Automated Scalability Assess

Examples of Operational Profile Representations

Rel. Freq.	9	jin a	ļ	
Load level				
Empirical distribution of load situations				

	Request	Orig.	Rel.
1	add to cart	63,761	0.07
2	cancel order	632	0.00
3	clear cart	6,047	0.01
- 4	defer order	6,782	0.01
5	home	59,934	0.07
6	inventory	30,596	0.03
7	login	61,500	0.07
8	logout	59,934	0.07
- 9	purchase cart	8,360	0.01
10	remove	3,027	0.00
11	sell inventory	66,679	0.08
12	shopping cart	9,074	0.01
13	view items	498,601	0.57
	Σ	874.927	1.00

 PPTAM: Production and Performance Testing Based Application Monitoring

Scalability Requirement Automated Measurement

The Classic Load Testing Approach

... and Classic Problems

Load Testing in Continuous Delivery Pipelines

... How Problems Get Worse

Avritzer et al.: Automated Scalability Assessment in DevOps

 PPTAM: Production and Performance Testing Based Application Monitoring

Quantitative Assessment of Deployment Alternatives

- Challenge: assess performance of architectural deployment alternatives (e.g., number of replicas, CPU/memory allocation, technology stack) under fuzzy requirements
- Our approach
 - Use operational data to generate and weigh load tests
 - Measure baseline requirements
 - Metric allows quantitative comparison of deployment alternatives
 - Builds on previous work from telecommunication systems:

Avritzer, A., Weyuker, E.J.: The automatic generation of load test suites and the assessment of the resulting software. IEEE Trans. Softw. Eng. 21(9) (Sep 1995)

Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo, Henning Schulz, and André van Hoorn: *A Quantitative Approach for the Assessment of Microservice Architecture Deployment Alternatives by Automated Performance Testing*.

In Proceedings of the 12th European Conference on Software Architecture (ECSA). LNCS, Springer, 2018 (Accepted)

Overview of Approach

Experiments

Experiment Results: Computation of Domain Metric (1/2)

			Users	Aggr. Rel. Freq.	-
			50	0.10582	-
API	Scalability Criteria		100	0.18519	Max: 0.20370
GET /	PASS		150	0.22222	
-			200	0.22222	
GET /cart	PASS		250	0.20370	Actual: 0.13580
POST /item	FAIL		300	0.06085	
Custom Op. Mix] [Aç	ggr. Rel. Freq.	Contrib. to Domain Metric

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

Experiment Results: Computation of Domain Metric (2/2)

	Users	Contribution		
	50	0.10582	Max: 1	
	100	0.18519		
	150	0.22222	Actual:	
	200	0.07999		
	250	0.13580	0.77631	
	300	0.04729		
			(4)	
С	ontrib. to I	Domain Metric	Domain Metric	
Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica				

Experiment Results: Single-Metric Comparison of Alternatives

-

RAM	$\mathrm{CPU} \not =$	≠ Cart Replicas	Bomain Metric (HPI)	Domain Metric (FUB)
$0.5~\mathrm{GB}$	0.25	1	0.61499	0.54134
1 GB	0.25	1	0.77631	0.53884
1 GB	0.5	1	0.53559	0.54106
$0.5~\mathrm{GB}$	0.5	1	0.51536	0.54773
$0.5~\mathrm{GB}$	0.5	2	0.50995	0.54111
1 GB	0.25	2	0.74080	0.54785
$1 \mathrm{GB}$	0.5	2	0.53401	0.54106
$0.5 \ GB$	0.5	4	0.50531	0.54939
1 GB	0.25	4	0.37162	0.54272
1 GB	0.5	4	0.56718	0.54271

Experiment Results: Visual Comparison of Alternatives

PPTAM

Production and Performance Testing Based Application Monitoring

Mirai BotNet

- Mirai is a malware that has been used to turn networked devices running Linux into remotely controlled bots
- We use it to attack the system. It can perform different types of attack
- by now, we have explored http, syn, ack

PPTAM, No attack and attack plots with 50 users

Identify Scalability Impacting Architecture Components

• Apply the approach to a large telecom system

Identify Scalability Impacting Architecture Components from Performance Testing Log

Counter_name	Measurement	Load	Service_name
Response Time_X	Y	L	S
Response Time_X	Y	L	S
Response Time_X	Y	L	S
Response Time_X	Y	L	S

What is the problem with this log?

Compute Scalability Baseline, Normalized Distance from Baseline, and Linear Regression Slope

Compute Scalability Baseline, Normalized Distance from Baseline, and Linear Regression Slope

Counter_NameLow Load_ RTStd _RTBaseline_RTResponse Time X2.4886023.51339712.033352

counter_name	ndistance	slope
Adjustment	0.3752636354043376	-1.884976598621312
Enquiry	1.2978283298346712	0.4271494595927855
Interrogation	1.1421493733096413	0.8751959028399963
Resources Read	0.91S1256042672528	0.45008251512825354
Resources Update	0.8476072966413862	14.582286979009389
Status Updates	1.574681052063459	35.94647108406611
Control	1.2999563153386215	0.9018681142194458
DB Data Management	1.4807154532199451	1.283218473057755
Internal Communication	0.8228936410883527	0.1300060342941485
Offline	1.734371281882527	0.011288058355378878
Online	0.9393507653154034	0.9230591413901067
Recompose	1.2213424785523563	1.354257418725071

Multivariate analysis used to prioritize re-factoring using Slope and Normalized Distance Profile

Summary

- DevOps provides access to real-time data, enables production and testing integration
- Use cases
 - Performance, Scalability, Security
 - other illities: survivability, resilience
- Provide detailed guidance to architects and developers in real time:
 - Domain-metric based scalability
 assessment dashboards
 - Prioritize component re-factoring based on load testing results

Publications

- A. Avritzer, D. S. Menasché, V. Rufino, B. Russo, A. Janes, V. Ferme, A. van Hoorn, H. Schulz, *PPTAM: Production and Performance Testing Based Application Monitoring*. <u>ICPE Companion 2019</u>: 39-40
- A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, A. van Hoorn, A Quantitative Approach for the Assessment of Microservice Architecture Deployment Alternatives by Automated Performance Testing. <u>ECSA 2018</u>: 159-174
- A. Avritzer, D. S. Menasché, V. Rufino, B. Russo, A. Janes, V. Ferme, A. van Hoorn, H. Schulz, Scalability Assessment of Microservice Architectural Configurations: A Domain-based Approach Leveraging Operational Profiles and Load Tests, Journal of Systems and Software, to appear 2020.